文档鸽首页 / 内容分类 / 内容列表 /

2018版高中数学(人教A版)必修1同步教师用书:第3章 3.2.2 函数模型的应用实例.doc [共13页] 一次函数 文档共13页 文件大小455.50 KB

3.2.2函数模型的应用实例1.会利用给定的函数模型解决实际问题.(重点)2.能够建立确定性函数模型解决问题及建立拟合函数模型解决实际问题.(重点、难点)[基础·初探]教材整理函数模型的应用阅读教材P101~P106,完成下列问题.1.常见的函数模型函数模型函数解析式(1)正比例函数模型f(x)=kx(k为常数,k≠0)(2)反比例函数模型f(x)=(k为常数,k≠0)(3)一次函数模型f(x)=kx+b(k,b为常数,k≠0)(4)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)(5)指数函数模型f(x)=abx+c(a,b,c为常数,a≠0,b>0,b≠1)(6)对数函数

欢迎来到文档鸽

2021

3.2.2函数模型的应用实例1.会利用给定的函数模型解决实际问题.(重点)2.能够建立确定性函数模型解决问题及建立拟合函数模型解决实际问题.(重点、难点)[基础·初探]教材整理函数模型的应用阅读教材P101~P106,完成下列问题.1.常见的函数模型函数模型函数解析式(1)正比例函数模型f(x)=kx(k为常数,k≠0)(2)反比例函数模型f(x)=(k为常数,k≠0)(3)一次函数模型f(x)=kx+b(k,b为常数,k≠0)(4)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)(5)指数函数模型f(x)=abx+c(a,b,c为常数,a≠0,b>0,b≠1)(6)对数函数模型f(x)=mlogax+n(m,n,a为常数,m≠0,a>0,a≠1)(7)幂函数模型f(x)=axn+b(a,b,n为常数,a≠0,n≠1)(8)分段函数模型f(x)=2.建立函数模型解决问题的框图表示图3-2-61.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y(只)与引入时间x(年)的关系为y=alog2(x+1),若该动物在引入一年后的数量为100只,则第7年它们发展到()A.300只B.400只C.600只D.700只【解析】将x=1,y=100代入y=alog2(x+1)得,100=alog2(1+1),解得a=100.所以x=7时,y=100log2(7+1)=300.【答案】A2.据调查,某自行车存车处在某星期日的存车量为2000辆次,其中变速车存车费是每辆一次0.8元,普通车存车费是每辆一次0.5元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式是()A.y=0.3x+800(0≤x≤2000)B.y=0.3x+1600(0≤x≤2000)C.y=-0.3x+800(0≤x≤2000)D.y=-0.3x+1600(0≤x≤2000)【解析】由题意知,变速车存车数为(2000-x)辆次,则总收入y=0.5x+(2000-x)×0.8=-0.3x+1600(0≤x≤2000).【答案】D[小组合作型]一次函数、二次函数模型的应用商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价